深入理解Golang中的反射机制与应用

发表时间: 2022-08-23 15:00

赵燕辉

首先来一段简单的代码逻辑热身,下面的代码大家觉得应该会打印什么呢?

type OKR struct {   id      int   content string}func getOkrDetail(ctx context.Context, okrId int) (*OKR, *okrErr.OkrErr) {   return &OKR{id: okrId, content: fmt.Sprint(rand.Int63())}, nil}func getOkrDetailV2(ctx context.Context, okrId int) (*OKR, okrErr.OkrError) {   if okrId == 2{      return nil, okrErr.OKRNotFoundError   }   return &OKR{id: okrId, content: fmt.Sprint(rand.Int63())}, nil}func paperOkrId(ctx context.Context) (int, error){   return 1, nil}func Test001(ctx context.Context) () {   var okr *OKR   okrId, err := paperOkrId(ctx)   if err != nil{      fmt.Println("####   111   ####")   }   okr, err = getOkrDetail(ctx, okrId)   if err != nil {      fmt.Println("####   222   ####")   }   okr, err = getOkrDetailV2(ctx, okrId)   if err != nil {      fmt.Println("####   333   ####")   }   okr, err = getOkrDetailV2(ctx, okrId + 1)   if err != nil {      fmt.Println("####   444   ####")   }   fmt.Println("####   555   ####")   fmt.Printf("%v", okr)}func main() {   Test001(context.Background())}

前言

在讲反射之前,先来看看 Golang 关于类型设计的一些原则

  • 在 Golang 中变量包括(type, value)两部分
  • 理解这一点就能解决上面的简单问题了
  • type 包括 static type 和 concrete type. 简单来说 static type 是你在编码是看见的类型(如 int、string),concrete type 是 runtime 系统看见的类型。类型断言能否成功,取决于变量的 concrete type,而不是 static type.

接下来要说的反射,就是能够在运行时更新变量和检查变量的值、调用变量的方法和变量支持的内在操作,而不需要在编译时就知道这些变量的具体类型。这种机制被称为反射。Golang 的基础类型是静态的(也就是指定 int、string 这些的变量,它的 type 是 static type),在创建变量的时候就已经确定,反射主要与 Golang 的 interface 类型相关(它的 type 是 concrete type),只有运行时 interface 类型才有反射一说。

Golang 中为什么要使用反射/什么场景可以(应该)使用反射

当程序运行时,我们获取到一个 interface 变量, 程序应该如何知道当前变量的类型,和当前变量的值呢?

当然我们可以有预先定义好的指定类型, 但是如果有一个场景是我们需要编写一个函数,能够处理一类共性逻辑的场景,但是输入类型很多,或者根本不知道接收参数的类型是什么,或者可能是没约定好;也可能是传入的类型很多,这些类型并不能统一表示。这时反射就会用的上了,典型的例子如:json.Marshal。

再比如说有时候需要根据某些条件决定调用哪个函数,比如根据用户的输入来决定。这时就需要对函数和函数的参数进行反射,在运行期间动态地执行函数。

举例场景:

比如我们需要将一个 struct 执行某种操作(用格式化打印代替),这种场景下我们有多种方式可以实现,比较简单的方式是:switch case

func Sprint(x interface{}) string {    type stringer interface {        String() string    }    switch x := x.(type) {    case stringer:        return x.String()    case string:        return x    case int:        return strconv.Itoa(x)    // int16, uint32...    case bool:        if x {            return "true"        }        return "false"    default:        return "wrong parameter type"    }}type permissionType int64

但是这种简单的方法存在一个问题, 当增加一个场景时,比如需要对 slice 支持,则需要在增加一个分支,这种增加是无穷无尽的,每当我需要支持一种类型,哪怕是自定义类型, 本质上是 int64 也仍然需要增加一个分支。

反射的基本用法

在 Golang 中为我们提供了两个方法,分别是 reflect.ValueOf 和 reflect.TypeOf,见名知意这两个方法分别能帮我们获取到对象的值和类型。Valueof 返回的是 Reflect.Value 对象,是一个 struct,而 typeof 返回的是 Reflect.Type 是一个接口。我们只需要简单的使用这两个进行组合就可以完成多种功能。

type GetOkrDetailResp struct {   OkrId   int64   UInfo   *UserInfo   ObjList []*ObjInfo}type ObjInfo struct {   ObjId int64   Content string}type UserInfo struct {   Name         string   Age          int   IsLeader     bool   Salary       float64   privateFiled int}// 利用反射创建structfunc NewUserInfoByReflect(req interface{})*UserInfo{  if req == nil{    return nil  }   reqType :=reflect.TypeOf(req)  if reqType.Kind() == reflect.Ptr{      reqType = reqType.Elem()   }   return reflect.New(reqType).Interface().(*UserInfo)}// 修改struct 字段值func ModifyOkrDetailRespData(req interface{}) {   reqValue :=reflect.ValueOf(req).Elem()   fmt.Println(reqValue.CanSet())   uType := reqValue.FieldByName("UInfo").Type().Elem()   fmt.Println(uType)   uInfo := reflect.New(uType)   reqValue.FieldByName("UInfo").Set(uInfo)}// 读取 struct 字段值,并根据条件进行过滤func FilterOkrRespData(reqData interface{}, objId int64){// 首先获取req中obj slice 的valuefor i := 0 ; i < reflect.ValueOf(reqData).Elem().NumField(); i++{      fieldValue := reflect.ValueOf(reqData).Elem().Field(i)if fieldValue.Kind() != reflect.Slice{continue      }      fieldType := fieldValue.Type() // []*ObjInfo      sliceType := fieldType.Elem() // *ObjInfo      slicePtr := reflect.New(reflect.SliceOf(sliceType)) // 创建一个指向 slice 的指针      slice := slicePtr.Elem()      slice.Set(reflect.MakeSlice(reflect.SliceOf(sliceType), 0, 0))  // 将这个指针指向新创建slice// 过滤所有objId == 当前objId 的structfor i := 0 ;i < fieldValue.Len(); i++{if fieldValue.Index(i).Elem().FieldByName("ObjId").Int() != objId {continue         }         slice = reflect.Append(slice, fieldValue.Index(i))      }// 将resp 的当前字段设置为过滤后的slice      fieldValue.Set(slice)   }}func Test003(){// 利用反射创建一个新的对象var uInfo *UserInfo   uInfo = NewUserInfoByReflect(uInfo)   uInfo = NewUserInfoByReflect((*UserInfo)(nil))// 修改resp 返回值里面的 user info 字段(初始化)   reqData1 := new(GetOkrDetailResp)   fmt.Println(reqData1.UInfo)   ModifyOkrDetailRespData(reqData1)   fmt.Println(reqData1.UInfo)// 构建请求参数   reqData := &GetOkrDetailResp{OkrId: 123}   for i := 0; i < 10; i++{      reqData.ObjList = append(reqData.ObjList, &ObjInfo{ObjId: int64(i), Content: fmt.Sprint(i)})   }// 输出过滤前结果   fmt.Println(reqData)// 对respData进行过滤操作   FilterOkrRespData(reqData, 6)// 输出过滤后结果   fmt.Println(reqData)}

反射的性能分析与优缺点

大家都或多或少听说过反射性能偏低,使用反射要比正常调用要低几倍到数十倍,不知道大家有没有思考过反射性能都低在哪些方面,我先做一个简单分析,通过反射在获取或者修改值内容时,多了几次内存引用,多绕了几次弯,肯定没有直接调用某个值来的迅速,这个是反射带来的固定性能损失,还有一方面的性能损失在于,结构体类型字段比较多时,要进行遍历匹配才能获取对应的内容。下面就根据反射具体示例来分析性能:

测试反射结构体初始化

// 测试结构体初始化的反射性能func Benchmark_Reflect_New(b *testing.B) {   var tf *TestReflectField   t := reflect.TypeOf(TestReflectField{})   for i := 0; i < b.N; i++ {      tf = reflect.New(t).Interface().(*TestReflectField)   }   _ = tf}// 测试结构体初始化的性能func Benchmark_New(b *testing.B) {   var tf *TestReflectField   for i := 0; i < b.N; i++ {      tf = new(TestReflectField)   }   _ = tf}

运行结果:

可以看出,利用反射初始化结构体和直接使用创建 new 结构体是有性能差距的,但是差距不大,不到一倍的性能损耗,看起来对于性能来说损耗不是很大,可以接受。

测试结构体字段读取/赋值

// ---------    ------------  字段读  ----------- ----------- -----------// 测试反射读取结构体字段值的性能func Benchmark_Reflect_GetField(b *testing.B) {   var tf = new(TestReflectField)   var r int64   temp := reflect.ValueOf(tf).Elem()   for i := 0; i < b.N; i++ {      r = temp.Field(1).Int()   }   _ = tf   _ = r}// 测试反射读取结构体字段值的性能func Benchmark_Reflect_GetFieldByName(b *testing.B) {   var tf = new(TestReflectField)   temp := reflect.ValueOf(tf).Elem()   var r int64   for i := 0; i < b.N; i++ {      r = temp.FieldByName("Age").Int()   }   _ = tf   _ = r}// 测试结构体字段读取数据的性能func Benchmark_GetField(b *testing.B) {   var tf = new(TestReflectField)   tf.Age = 1995   var r int   for i := 0; i < b.N; i++ {      r = tf.Age   }   _ = tf   _ = r}// ---------    ------------  字段写  ----------- ----------- -----------// 测试反射设置结构体字段的性能func Benchmark_Reflect_Field(b *testing.B) {   var tf = new(TestReflectField)   temp := reflect.ValueOf(tf).Elem()   for i := 0; i < b.N; i++ {      temp.Field(1).SetInt(int64(25))   }   _ = tf}// 测试反射设置结构体字段的性能func Benchmark_Reflect_FieldByName(b *testing.B) {   var tf = new(TestReflectField)   temp := reflect.ValueOf(tf).Elem()   for i := 0; i < b.N; i++ {      temp.FieldByName("Age").SetInt(int64(25))   }   _ = tf}// 测试结构体字段设置的性能func Benchmark_Field(b *testing.B) {   var tf = new(TestReflectField)   for i := 0; i < b.N; i++ {      tf.Age = i   }   _ = tf}

测试结果:

从上面可以看出,通过反射进行 struct 字段读取耗时是直接读取耗时的百倍。直接对实例变量进行赋值每次 0.5 ns,性能是通过反射操作实例指定位置字段的 10 倍左右。使用 FieldByName("Age") 方法性能比使用 Field(1) 方法性能要低十倍左右,看代码的话我们会发现,FieldByName 是通过遍历匹配所有的字段,然后比对字段名称,来查询其在结构体中的位置,然后通过位置进行赋值,所以性能要比直接使用 Field(index) 低上很多。

建议:

1.如果不是必要尽量不要使用反射进行操作, 使用反射时要评估好引入反射对接口性能的影响。

2.减少使用 FieldByName 方法。在需要使用反射进行成员变量访问的时候,尽可能的使用成员的序号。如果只知道成员变量的名称的时候,看具体代码的使用场景,如果可以在启动阶段或在频繁访问前,通过 TypeOf() 、Type.FieldByName() 和 StructField.Index 得到成员的序号。注意这里需要的是使用的是 reflect.Type 而不是 reflect.Value,通过 reflect.Value 是得不到字段名称的。

测试结构体方法调用

// 测试通过结构体访问方法性能func BenchmarkMethod(b *testing.B) {   t := &TestReflectField{}   for i := 0; i < b.N; i++ {      t.Func0()   }}// 测试通过序号反射访问无参数方法性能func BenchmarkReflectMethod(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   for i := 0; i < b.N; i++ {      v.Method(0).Call(nil)   }}// 测试通过名称反射访问无参数方法性能func BenchmarkReflectMethodByName(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   for i := 0; i < b.N; i++ {      v.MethodByName("Func0").Call(nil)   }}// 测试通过反射访问有参数方法性能func BenchmarkReflectMethod_WithArgs(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   for i := 0; i < b.N; i++ {      v.Method(1).Call([]reflect.Value{reflect.ValueOf(i)})   }}// 测试通过反射访问结构体参数方法性能func BenchmarkReflectMethod_WithArgs_Mul(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   for i := 0; i < b.N; i++ {      v.Method(2).Call([]reflect.Value{reflect.ValueOf(TestReflectField{})})   }}// 测试通过反射访问接口参数方法性能func BenchmarkReflectMethod_WithArgs_Interface(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   for i := 0; i < b.N; i++ {      var tf TestInterface = &TestReflectField{}      v.Method(3).Call([]reflect.Value{reflect.ValueOf(tf)})   }}// 测试访问多参数方法性能func BenchmarkMethod_WithManyArgs(b *testing.B) {   s := &TestReflectField{}   for i := 0; i < b.N; i++ {      s.Func4(i, i, i, i, i, i)   }}// 测试通过反射访问多参数方法性能func BenchmarkReflectMethod_WithManyArgs(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   va := make([]reflect.Value, 0)   for i := 1; i <= 6; i++ {      va = append(va, reflect.ValueOf(i))   }   for i := 0; i < b.N; i++ {      v.Method(4).Call(va)   }}// 测试访问有返回值的方法性能func BenchmarkMethod_WithResp(b *testing.B) {   s := &TestReflectField{}   for i := 0; i < b.N; i++ {      _ = s.Func5()   }}// 测试通过反射访问有返回值的方法性能func BenchmarkReflectMethod_WithResp(b *testing.B) {   v := reflect.ValueOf(&TestReflectField{})   for i := 0; i < b.N; i++ {      _ = v.Method(5).Call(nil)[0].Int()   }}

这个测试结果同上面的分析相同

优缺点

优点:

  1. 反射提高了程序的灵活性和扩展性,降低耦合性,提高自适应能力。
  2. 合理利用反射可以减少重复代码

缺点:

  1. 与反射相关的代码,经常是难以阅读的。在软件工程中,代码可读性也是一个非常重要的指标。
  2. Go 语言作为一门静态语言,编码过程中,编译器能提前发现一些类型错误,但是对于反射代码是无能为力的。所以包含反射相关的代码,很可能会运行很久,才会出错,这时候经常是直接 panic,可能会造成严重的后果。
  3. 反射对性能影响还是比较大的,比正常代码运行速度慢一到两个数量级。所以,对于一个项目中处于运行效率关键位置的代码,尽量避免使用反射特性。

反射在 okr 中的简单应用

func OkrBaseMW(next endpoint.EndPoint) endpoint.EndPoint {   return func(ctx context.Context, req interface{}) (resp interface{}, err error) {      if req == nil {         return next(ctx, req)      }      requestValue := reflect.ValueOf(req)      // 若req为指针,则转换为非指针值      if requestValue.Type().Kind() == reflect.Ptr {         requestValue = requestValue.Elem()      }      // 若req的值不是一个struct,则不注入      if requestValue.Type().Kind() != reflect.Struct {         return next(ctx, req)      }      if requestValue.IsValid() {         okrBaseValue := requestValue.FieldByName("OkrBase")         if okrBaseValue.IsValid() && okrBaseValue.Type().Kind() == reflect.Ptr {            okrBase, ok := okrBaseValue.Interface().(*okrx.OkrBase)            if ok {               ctx = contextWithUserInfo(ctx, okrBase)               ctx = contextWithLocaleInfo(ctx, okrBase)               ctx = contextWithUserAgent(ctx, okrBase)               ctx = contextWithCsrfToken(ctx, okrBase)               ctx = contextWithReferer(ctx, okrBase)               ctx = contextWithXForwardedFor(ctx, okrBase)               ctx = contextWithHost(ctx, okrBase)               ctx = contextWithURI(ctx, okrBase)               ctx = contextWithSession(ctx, okrBase)            }         }      }      return next(ctx, req)   }}

结论:

使用反射必定会导致性能下降,但是反射是一个强有力的工具,可以解决我们平时的很多问题,比如数据库映射、数据序列化、代码生成场景。在使用反射的时候,我们需要避免一些性能过低的操作,例如使用 FieldByName() 和MethodByName() 方法,如果必须使用这些方法的时候,我们可以预先通过字段名或者方法名获取到对应的字段序号,然后使用性能较高的反射操作,以此提升使用反射的性能。

加入我们

我们来自字节跳动飞书商业应用研发部(Lark Business Applications),目前我们在北京、深圳、上海、武汉、杭州、成都、广州、三亚都设立了办公区域。我们关注的产品领域主要在企业经验管理软件上,包括飞书 OKR、飞书绩效、飞书招聘、飞书人事等 HCM 领域系统,也包括飞书审批、OA、法务、财务、采购、差旅与报销等系统。

欢迎各位加入我们。扫码发现职位&投递简历(二维码如下)官网投递:

点击「链接」,欢迎各位加入我们