本文转载自微信公众号:JavaGuide
书籍推荐
常见问题总结
存储引擎
一些常用命令
查看MySQL提供的所有存储引擎
mysql> show engines;
查看MySQL提供的所有存储引擎
从上图我们可以查看出 MySQL 当前默认的存储引擎是InnoDB,并且在5.7版本所有的存储引擎中只有 InnoDB 是事务性存储引擎,也就是说只有 InnoDB 支持事务。
查看MySQL当前默认的存储引擎
我们也可以通过下面的命令查看默认的存储引擎。
mysql> show variables like '%storage_engine%';
查看表的存储引擎
show table status like "table_name" ;
查看表的存储引擎
MyISAM和InnoDB区别
MyISAM是MySQL的默认数据库引擎(5.5版之前)。虽然性能极佳,而且提供了大量的特性,包括全文索引、压缩、空间函数等,但MyISAM不支持事务和行级锁,而且最大的缺陷就是崩溃后无法安全恢复。不过,5.5版本之后,MySQL引入了InnoDB(事务性数据库引擎),MySQL 5.5版本后默认的存储引擎为InnoDB。
大多数时候我们使用的都是 InnoDB 存储引擎,但是在某些情况下使用 MyISAM 也是合适的比如读密集的情况下。(如果你不介意 MyISAM 崩溃回复问题的话)。
两者的对比:
《MySQL高性能》上面有一句话这样写到:
不要轻易相信“MyISAM比InnoDB快”之类的经验之谈,这个结论往往不是绝对的。在很多我们已知场景中,InnoDB的速度都可以让MyISAM望尘莫及,尤其是用到了聚簇索引,或者需要访问的数据都可以放入内存的应用。
一般情况下我们选择 InnoDB 都是没有问题的,但是某事情况下你并不在乎可扩展能力和并发能力,也不需要事务支持,也不在乎崩溃后的安全恢复问题的话,选择MyISAM也是一个不错的选择。但是一般情况下,我们都是需要考虑到这些问题的。
字符集及校对规则
字符集指的是一种从二进制编码到某类字符符号的映射。校对规则则是指某种字符集下的排序规则。MySQL中每一种字符集都会对应一系列的校对规则。
MySQL采用的是类似继承的方式指定字符集的默认值,每个数据库以及每张数据表都有自己的默认值,他们逐层继承。比如:某个库中所有表的默认字符集将是该数据库所指定的字符集(这些表在没有指定字符集的情况下,才会采用默认字符集) PS:整理自《Java工程师修炼之道》
索引
MySQL索引使用的数据结构主要有BTree索引 和 哈希索引 。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
MySQL的BTree索引使用的是B数中的B+Tree,但对于主要的两种存储引擎的实现方式是不同的。
更多关于索引的内容可以查看文档首页MySQL目录下关于索引的详细总结。
查询缓存的使用
执行查询语句的时候,会先查询缓存。不过,MySQL 8.0 版本后移除,因为这个功能不太实用
my.cnf加入以下配置,重启MySQL开启查询缓存
query_cache_type=1query_cache_size=600000
MySQL执行以下命令也可以开启查询缓存
set global query_cache_type=1;set global query_cache_size=600000;
如上,开启查询缓存后在同样的查询条件以及数据情况下,会直接在缓存中返回结果。这里的查询条件包括查询本身、当前要查询的数据库、客户端协议版本号等一些可能影响结果的信息。因此任何两个查询在任何字符上的不同都会导致缓存不命中。此外,如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL库中的系统表,其查询结果也不会被缓存。
缓存建立之后,MySQL的查询缓存系统会跟踪查询中涉及的每张表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。
缓存虽然能够提升数据库的查询性能,但是缓存同时也带来了额外的开销,每次查询后都要做一次缓存操作,失效后还要销毁。 因此,开启缓存查询要谨慎,尤其对于写密集的应用来说更是如此。如果开启,要注意合理控制缓存空间大小,一般来说其大小设置为几十MB比较合适。此外,还可以通过sql_cache和sql_no_cache来控制某个查询语句是否需要缓存:
select sql_no_cache count(*) from usr;
什么是事务?
事务是逻辑上的一组操作,要么都执行,要么都不执行。
事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。
事物的四大特性(ACID)
事物的特性
并发事务带来哪些问题?
在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对统一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。
不可重复度和幻读区别:
不可重复读的重点是修改比如多次读取一条记录发现其中某些列的值被修改,幻读的重点在于新增或者删除比如多次读取一条记录发现记录增多或减少了。
事务隔离级别有哪些?MySQL的默认隔离级别是?
SQL 标准定义了四个隔离级别:
隔离级别脏读不可重复读幻影读READ-UNCOMMITTED√√√READ-COMMITTED×√√REPEATABLE-READ××√SERIALIZABLE×××
MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation;命令来查看
mysql> SELECT @@tx_isolation;+-----------------+| @@tx_isolation |+-----------------+| REPEATABLE-READ |+-----------------+
这里需要注意的是:与 SQL 标准不同的地方在于 InnoDB 存储引擎在 REPEATABLE-READ(可重读)事务隔离级别下使用的是Next-Key Lock 锁算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server)是不同的。所以说InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要求,即达到了 SQL标准的SERIALIZABLE(可串行化)隔离级别。
因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内容):,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读)并不会有任何性能损失。
InnoDB 存储引擎在 分布式事务 的情况下一般会用到SERIALIZABLE(可串行化)隔离级别。
锁机制与InnoDB锁算法
MyISAM和InnoDB存储引擎使用的锁:
表级锁和行级锁对比:
InnoDB存储引擎的锁的算法有三种:
相关知识点:
大表优化
当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:
1. 限定数据的范围
务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内;
2. 读/写分离
经典的数据库拆分方案,主库负责写,从库负责读;
3. 垂直分区
根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。
简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。
数据库垂直分区
4. 水平分区
保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。
水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。
数据库水平拆分
水平拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库 。
水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨节点Join性能较差,逻辑复杂。《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。
下面补充一下数据库分片的两种常见方案:
最后关于对MySQL数据库还有不明白的地方,我这里也整理了一份PDF送给有需要的伙伴
由于平台文章篇幅限制,需要获取《深入浅出MySQL+数据库开发、优化与管理维护》的pdf文档帮忙转发分享此文,然后再关注我私信回复“MySQL”获取资料领取方式吧!!