OpenAI高阶应用发展:任务对齐主管预测未来突破

发表时间: 2024-11-18 18:53

来源:AI寒武纪

刚刚读到OpenAI 的任务对齐主管Joshua Achiam的分享,他谈到:“对于人工智能的下一阶段,它将在大多数人不知道或不关心的长尾高度专业化技术任务方面变得更好,从而造成一种进展停滞不前的错觉。"

大多数人不知道,不关心,就会让人觉得AI发展停滞不前了?这个逻辑成立吗?个人很好奇他所说的 "高度专业化任务 "是什么?还是说OpenAI真的”撞墙“了?

我们来看看这个老哥说了什么?

我预期将会出现一种奇特的现象:在 AI 的下一个阶段,它将在大量高度专业化的技术任务上表现得更出色,而这些任务大多数人并不了解或关心,这将制造出一种进展停滞的错觉

"A strange phenomenon I expect will play out: for the next phase of AI, it’s going to get better at a long tail of highly-specialized technical tasks that most people don’t know or care about, creating an illusion that progress is standing still."

研究人员会达成他们认为极其重要的里程碑,但多数用户在当时并不会理解其重要性。

"Researchers will hit milestones that they recognize as incredibly important, but most users will not understand the significance at the time."

整体的鲁棒性将会逐步增强。一年之内,常用的大模型在编程、写作和日常事务方面的可靠性将显著提高。然而,鲁棒性的提升并不引人注目,因此很多人可能不会察觉到其中的变化。

"Robustness across the board will increase gradually. In a year, common models will be much more reliably good at coding tasks, writing tasks, basic chores, etc. But robustness is not flashy and many people won’t perceive the difference."

或许在某个时刻,也许是两年之后,人们会注意到 AI 已经深度融入了几乎所有的商业领域,因为它已经跨越了所有的可靠性门槛。这就像智能手机从 2007 年的新奇事物演变为 2010 年代的无处不在一样。

"At some point, maybe two years from now, people will look around and notice that AI is firmly embedded into nearly every facet of commerce because it will have crossed all the reliability thresholds. Like when smartphones went from a novelty in 2007 to ubiquitous in the 2010s."

对于接下来会发生的事情,我很难预测。许多因素存在不确定性,且依赖于未来的发展路径。我唯一有信心的预测是,到 2026 年,Gary Marcus(一直以来对深度学习持怀疑态度的知名学者) 将会坚持认为深度学习已经触及瓶颈

"It feels very hard to guess what happens after that. Much is uncertain and path dependent. My only confident prediction is that in 2026 Gary Marcus will insist that deep learning has hit a wall."

(附录:整个讨论甚至算不上什么预测。这大致反映了自 2023 年初 GPT-4 发布以来的讨论现状,并预计这一趋势将会持续。各种改进和突破的长尾效应正被严重低估)

"(Addendum: this whole thread isn’t even much of a prediction. This is roughly how discourse has played out since GPT-4 was released in early 2023, and an expectation that the trend will continue. The long tail of improvements and breakthroughs is flying way under the radar.)"

我个人倾向于OpenAI内部GPT-5训练可能真的不顺,一个真正的好东西大众却无法感受,这个逻辑上不成立,不过据说o1正式版马上就要发布了,大家对o1的预览版推出时是什么感受?有没有达到你的预期?Sam Altman 之前有说o1正式版要比预览版强很多,果真如他所说,那2025年还真的值得期待的

阅读最新前沿科技研究报告,欢迎访问欧米伽研究所的“未来知识库”

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或点击本文左下角“阅读原文”进入。

截止到10月25日 ”未来知识库”精选的100部前沿科技趋势报告

1. 牛津大学博士论文《深度具身智能体的空间推理与规划》230页

2. 2024低空经济场景白皮书v1.0(167页)

3. 战略与国际研究中心(CSIS)人类地月空间探索的总体状况研究报告(2024)

4. 人工智能与物理学相遇的综述(86页)

5. 麦肯锡:全球难题,应对能源转型的现实问题(196页)

6. 欧米伽理论,智能科学视野下的万物理论新探索(50页报告)

7. 《美国反无人机系统未来趋势报告(2024-2029 年)》

8. Gartner 2025 年主要战略技术趋势研究报告

9. 2024人工智能国外大模型使用手册+中文大模型使用手册

10. 详解光刻巨人ASML成功之奥妙-241015(94页)

11. CB Insights:未来变革者:2025年九大科技趋势研究报告

12. 国际电信联盟2023-2024年联合国人工智能AI活动报告388页

13. 《人工智能能力的人类系统集成测试和评估》最新51页,美国防部首席数字和人工智能办公室(CDAO)

14. 2024瑞典皇家科学院诺贝尔化学奖官方成果介绍报告

15. MHP:2024全球工业4.0晴雨表白皮书

16. 世界经济论坛白皮书《AI价值洞察:引导人工智能实现人类共同目标》

17. 瑞典皇家科学院诺贝尔物理学奖科学背景报告资料

18. AI智能体的崛起:整合人工智能、区块链技术与量子计算(研究报告,书)

19. OpenAI o1 评估:AGI 的机遇和挑战(280页)

20. 世界知识产权组织:2024 年全球创新指数(326页)

21. 美国白宫:国家近地天体防御策略与行动计划

22. 【CMU博士论文】持续改进机器人的探索,243页

23. 中国信通院:量子计算发展态势研究报告2024年58页

24. 2024年OpenAI最新大模型o1革新进展突出表现及领域推进作用分析报告

25. 【新书】通用人工智能,144页

26. 联合国:《未来契约》、《全球数字契约》和《子孙后代问题宣言》三合一

27. 世界气候组织:2024团结在科学中,守卫地球系统的未来

28. 世界经济论坛 《量子技术助力社会发展:实现可持续发展目标》研究报告

29. 人工智能科学家:迈向全自动开放式科学发现

30. 欧盟:石墨烯旗舰项目十年评估报告

31. 美国信息技术和创新基金会:美国的数字身份之路研究报告

32. 麦肯锡:2024能源转型挑战未来研究报告

33. 联合国贸易与发展会议:2024世界投资报告

34. 兰德:评估人工智能对国家安全和公共安全的影响

35. 兰德:2024评估人工智能基础模型市场的自然垄断条件

36. 经合组织:2015-2022 年生物多样性与发展融资

37. ITIF:中国半导体创新能力研究报告

38. 英国皇家学会:数学未来计划, 数学和数据教育的新方法研究报告

39. 欧盟:10年人类大脑计划创新评估报告

40. GLG格理集团:2024深度解读半导体行业关键趋势和专家洞见报告15页

41. 华为智能世界2030报告2024版741页

42. 联合国:2024为人类治理人工智能最终报告

43. 达信Marsh:2024全球科技产业风险研究报告英文版27页

44. 鼎帷咨询:2024英伟达人工智能发展战略研究报告149页

45. 【博士论文】大语言模型的测试与评价:准确性、无害性和公平性,223页pdf

46. 麦肯锡:2024世界能源产业展望

47. 世界经济论坛《太空:全球经济增长的 1.8 万亿美元机遇》

48. 世界经济论坛:世界“技术先锋”名单100家公司名单

49. 世界经济论坛:2024绘制地球观测的未来:气候情报技术创新

50. 核聚变技术作为清洁能源供应替代来源的全球发展和准备情况

51. 大模型生成的idea新颖性与人类对比研究报告(94页)

52. IQM :2024 年量子状况报告

53. 2024十大新兴技术研究报告

54. 2024地球观测 (EO) 洞察带来的全球价值(58页)

55. 2023-2024世界基础设施监测报告

56. 世界银行:2024世界发展报告,中等收入陷阱

57. 2024国际前沿人工智能安全科学报告132页

58. 斯坦福大学2024人工智能指数报告

59. 美国总统科学技术顾问委员会:《利用人工智能应对全球挑战》63页报告

60. 柳叶刀行星健康:2024地球系统安全与健康评估报告

61. 中国未来50年产业发展趋势白皮书III

62. OpenAI o1系列产品原理与安全最新研究报告(80页)

63. 国家互联网信息办公室:国家信息化发展报告2023年110页

64. 埃森哲:2024年风险研究报告-重大颠覆需要持续重塑英文版39页

65. 36氪研究院:2024年中国城市低空经济发展指数报告41页

66. 美国信息技术与创新基金会:《中国在量子领域的创新能力如何》研究报告

67. 理解深度学习500页报告

68. 鼎帷咨询:2024全球人工智能发展研究报告44页

69. 【伯克利博士论文】大型语言模型迈向能够学习和发现一切的机器

70. 《量子技术:前景、危险和可能性》45页报告

71. 英国皇家学会报告:人工智能在科学、技术、工程和数学领域的应用

72. 未来今日研究所:2024世界技趋势报告(980页)

73. 面向大规模脉冲神经网络:全面综述与未来方向

74. 大模型+知识库市场全景报告

75. 《太空力量的理论基础:从经济学到不对称战争》2024最新94页报告

76. CBInsights:2024年第二季度全球企业风险投资状况报告英文版124页

77. 英国科学院:数据管理和使用:21 世纪的治理(2024),99页

78. 兰德智库:展望2045 一项前瞻性研究探讨未来 20 年全球趋势的影响

79. 世界知识产权组织:2024年世界知识产权报告:让创新政策促进发展

80. 全球灾难风险研究所:评估大型语言模型接管灾难的风险

81. 牛津马丁学院:人工智能风险国际科学评估的未来

82. 联合国贸易和发展署:2024世界投资报告

83. 兰德公司:人工智能军事应用的新风险和机遇

84. 英国皇家学会:AI时代的科学发展趋势研究报告

85. 百页风电行业研究方法论:从中国到世界从陆地到海洋-240902,98页

86. 中国信通院发布《大模型落地路线图研究报告(2024年)》

87. 星河智源:2024年无人驾驶技术全景报告35页

88. 星河智源:2024年光刻机技术全景报告37页

89. 人形机器人行业研究方法论:特斯拉领衔人形机器人的从1到N

90. 兰德:展望2045一项关于未来20年全球趋势影响的前瞻性研究报告英文版45页

91. 《军事创新与气候挑战》2024最新152页报告

92. 麦肯锡:2024困难点:驾驭能源转型的物理现实(196页)

93. 《麻省理工科技评论》万字长文:什么是人工智能?

94. 软件与服务行业:从特斯拉智能驾驶看人形机器人发展路径

95. 中国信通院:中国数字经济发展研究报告2024年82页

96. CB Insights:2024年第二季度全球风险投资状况报告 244页

97. 脑启发的人工智能:全面综述

98. 二十年关键技术跟踪报告

99. 中国首部城市大脑系列建设标准(8项)汇编

100. 麦肯锡2024技术趋势展望报告100页

上下滑动查看更多