八大排序算法动画演示,轻松理解数据结构

发表时间: 2022-01-15 20:47

一、直接插入排序


基本思想:

我们平时玩扑克牌时,摸牌阶段的排序就用到了插入排序的思想

  • 1、当插入第n个元素时,前面的n-1个数已经有序
  • 2、用这第n个数与前面的n-1个数比较,找到要插入的位置,将其插入(原来位置上的数不会被覆盖,因为提前保存了)
  • 3、原来位置上的数据,依次后移

具体实现:

  • ①单趟的实现(将x插入到 [0,end] 的有序区间)

即一般情况下的插入,我们随机列举了一些数字,待插入的数字分为两种情况

(1)待插入的数字是在前面有序数字的中间数,直接比较将x赋值给end+1位置 (2)x是最小的一个数,end就会到达-1的位置,最后直接将x赋值给end+1位置

  • ②整个数组排序的实现

我们一开始并不知道数组是不是有序的,所以我们控制下标,end从0开始,将end+1位置的值始终保存到x中,循环进行单趟排序即可,最后结束时end=n-2,n-1位置的数字保存到x中

总体代码:

void InsertSort(int* a, int n){ assert(a);  for (int i = 0; i < n - 1; ++i) {  int end = i;  int x=a[end+1];//将end后面的值保存到x里面了  //将x插入到[0,end]的有序区间  while (end >= 0)  {   if (a[end] > x)   {    a[end + 1] = a[end];  //往后挪动一位    --end;   }   else   {    break;   }  }  a[end + 1] = x;      //x放的位置都是end的后一个位置 }}

直接插入排序总结:

  • ①元素越接近有序,直接插入排序的效率越高
  • ②时间复杂度:O(N^2)

最坏的情况下,每次插入一个数字,前面的数字都要挪动一下,一共需要挪动1+2+3+……+n=n(n+1)/2

③空间复杂度:O(1)

没有借助额外的空间,只用到常数个变量

二、希尔排序


基本思想:

  • 1、先选定个小于n的数字作为gap,所有距离为gap的数分为一组进行预排序(直接插入排序)
  • 2、再选一个小于gap的数,重复①的操作
  • 3、当gap=1时,相当于整个数组就是一组,再进行一次插入排序即可整体有序

例如:

具体实现:

①单组排序

和前面的直接插入相同,就是把原来的间隔为1,现在变为gap了,每组分别进行预排序

②多组进行排序


③整个数组进行排序(控制gap)

多次预排序(gap>1)+ 一次插入排序(gap==1)

(1)gap越大,预排越快,越不接近于有序

(2)gap越小,预排越慢,越接近有序

结果就是:

总体代码:

void ShellSort(int* a, int n){  int gap = n; while (gap > 1) {  gap /= 2;   for (int i = 0; i < n - gap; i++)  {   int end = i;   int x = a[end + gap];   while (end >= 0)   {    if (a[end] > x)    {     a[end + gap] = a[end];     end -= gap;    }    else    {     break;    }   }   a[end + gap] = x;  } }}

希尔排序总结:

  • ①希尔排序是对直接插入排序的优化
  • ②时间复杂度:O(N^1.3)
  • ③空间复杂度:O(1)

三、选择排序


基本思想:

每次从数组中选出最大的或者最小的,存放在数组的最右边或者最左边,直到全部有序

具体实现:

我们这里进行了优化,一次排序中,直接同时选出最大的数(a[maxi])和最小的数(a[mini])放在最右边和最左边,这样排序效率是原来的2倍

  • ①单趟排序

找到最小的数字(a[mini])和最大的数字(a[maxi]),将它们放在最左边和最右边

ps:其中的begin,end保存记录左右的下标,mini,maxi记录保存最小值和最大值的下标

  • ②整个数组排序

begin++和end--这样下次就可以排剩下的n-2个数字,再次进行单趟,如此可构成循环,直到begin小于end

整体代码:

void SelectSort(int* a, int n){ int begin = 0,end = n - 1;  while (begin<end) {  int mini = begin, maxi = begin;   for (int i = begin; i <= end; i++)  {   if (a[i] < a[mini])   {    mini = i;   }   if (a[i] > a[maxi])   {    maxi = i;   }  }  Swap(&a[mini], &a[begin]);  //当begin==maxi时,最大值会被换走,修正一下  if (begin==maxi)  {   maxi=mini;  }  Swap(&a[maxi], &a[end]);  begin++;  end--; }}

直接选择排序总结:

  • ①直接选择排序很好理解,但实际效率不高,很少使用
  • ②时间复杂度:O(N^2)
  • ③空间复杂度:O(1)

四、堆排序

基本思想:

  • 1、将待排序的序列构造成一个大堆,根据大堆的性质,当前堆的根节点(堆顶)就是序列中最大的元素;
  • 2、将堆顶元素和最后一个元素交换,然后将剩下的节点重新构造成一个大堆;
  • 3、重复步骤2,如此反复,从第一次构建大堆开始,每一次构建,我们都能获得一个序列的最大值,然后把它放到大堆的尾部。最后,就得到一个有序的序列了。
  • 小结论: 排升序,建大堆 排降序,建小堆

具体实现:、

  • ①向下调整算法

我们将给定的数组序列,建成一个大堆,建堆从根节点开始就需要多次的向下调整算法

堆的向下调整算法(使用前提): (1)若想将其调整为小堆,那么根结点的左右子树必须都为小堆。 (2)若想将其调整为大堆,那么根结点的左右子树必须都为大堆。


向下调整算法的基本思想:

  • 1、从根节点开始,选出左右孩子值较大的一个
  • 2、如果选出的孩子的值大于父亲的值,那么就交换两者的值
  • 3、将大的孩子看做新的父亲,继续向下调整,直到调整到叶子节点为止
//向下调整算法//以建大堆为例void AdJustDown(int* a, int n, int parent){ int child = parent * 2 + 1; //默认左孩子较大 while (child < n) {  if (child + 1 < n && a[child+1] > a[child ])//如果这里右孩子存在,                                       //且更大,那么默认较大的孩子就改为右孩子  {   child++;  }  if(a[child]>a[parent])  {   Swap(&a[child], &a[parent]);   parent = child;   child = parent * 2 + 1;  }  else  {   break;  } }}
  • ②建堆(将给定的任意数组建成大堆)

建堆思想: 从倒数第一个非叶子节点开始,从后往前,依次将其作为父亲,依次向下调整,一直调整到根的位置

建堆图示:

        //最后一个叶子结点的父亲为i,从后往前,依次向下调整,直到调到根的位置     for (int i = (n - 1 - 1) / 2;i>=0;--i)     {      AdJustDown(a,n,i);     }
  • ③堆排序(利用堆删的思想进行)

堆排序的思想: 1、建好堆之后,将堆顶的数字与最后一个数字交换 2、将最后一个数字不看,剩下的n-1个数字再向下调整成堆再进行第1步 3、直到最后只剩一个数停止,这样就排成有序的了


    for (int end = n - 1; end > 0; --end)     {      Swap(&a[end],&a[0]);      AdJustDown(a,end,0);     }

整体代码如下:

    void AdJustDown(int* a, int n, int parent)    {     int child = parent * 2 + 1;          while (child < n)     {      if (child + 1 < n && a[child+1] > a[child ])                                                 {       child++;      }      if(a[child]>a[parent])      {       Swap(&a[child], &a[parent]);       parent = child;       child = parent * 2 + 1;      }      else      {       break;      }     }    }         //堆排序    void HeapSort(int*a,int n)    {          for (int i = (n - 1 - 1) / 2;i>=0;--i)     {      AdJustDown(a,n,i);     }          for (int end = n - 1; end > 0; --end)     {      Swap(&a[end],&a[0]);      AdJustDown(a,end,0);     }    }

五、冒泡排序


冒泡排序的基本思想:

一趟过程中,前后两个数依次比较,将较大的数字往后推,下一次只需要比较剩下的n-1个数,如此往复

    //优化版本的冒泡排序    void BubbleSort(int* a, int n)    {     int end = n-1;     while (end>0)     {      int exchange = 0;      for (int i = 0; i < end; i++)      {       if (a[i] > a[i + 1])       {        Swap(&a[i], &a[i + 1]);        exchange = 1;       }      }      if (exchange == 0)//单趟过程中,若没有交换过,证明已经有序,没有必要再排序      {       break;      }      end--;     }    }

冒泡排序总结:

  • ①非常容易理解的排序
  • ②时间复杂度:O(N^2)
  • ③空间复杂度:O(1)

六、快速排序


递归版本

1、hoare版本

hoare的单趟思想: 1、左边作key,右边先走找到比key小的值 2、左边后走找到大于key的值 3、然后交换left和right的值 4、一直循环重复上述1 2 3步 5、两者相遇时的位置,与最左边选定的key值交换 这样就让key到达了正确的位置上

动图演示:

    //hoare版本    //单趟排序  让key到正确的位置上   keyi表示key的下标,并不是该位置的值    int partion1(int* a, int left, int right)    {     int keyi = left;//左边作keyi     while (left < right)     {   //右边先走,找小于keyi的值      while (left < right && a[right] >= a[keyi])      {       right--;      }      //左边后走,找大于keyi的值      while (left < right && a[left] <= a[keyi])      {       left++;      }      Swap(&a[left], &a[right]);     }     Swap(&a[left], &a[keyi]);     return left;    }         void QuickSort(int* a, int left, int right)    {     if (left >= right)      return;          int keyi = partion1(a, left, right);     //[left,keyi-1] keyi [keyi+1,right]     QuickSort(a, left, keyi - 1);     QuickSort(a, keyi + 1, right);    }

2、挖坑法

其实本质上是hoare的变形

挖坑法单趟思想: 1、先将最左边第一个数据存放在临时变量key中,形成一个坑位 2、右边先出发找到小于key的值,然后将该值丢到坑中去,此时形成一个新坑位 3、左边后出发找到大于key的值,将该值丢入坑中去,此时又形成一个新的坑位 4、一直循环重复1 2 3步 5、直到两边相遇时,形成一个新的坑,最后将key值丢进去 这样key就到达了正确的位置上了

动图演示:

    //挖坑法    int partion2(int* a, int left, int right)    {     int key = a[left];     int pit = left;     while (left < right)     {      while (left < right && a[right] >= key)      {       right--;      }      a[pit] = a[right];//填坑      pit=right;                while (left < right && a[left] <= key)      {       left++;      }      a[pit] = a[left];//填坑      pit=left;     }     a[pit] = key;     return pit;    }         void QuickSort(int* a, int left, int right)    {     if (left >= right)      return;          int keyi = partion2(a, left, right);     //[left,keyi-1] keyi [keyi+1,right]     QuickSort(a, left, keyi - 1);     QuickSort(a, keyi + 1, right);    }

3、前后指针法(推荐这种写法)

前后指针的思想:

1、初始时选定prev为序列的开始,cur指针指向prev的后一个位置,同样选择最左边的第一个数字作为key 2、cur先走,找到小于key的值,找到就停下来 3、++prev 4、交换prev和cur为下标的值 5、一直循环重复2 3 4步,停下来后,最后交换key和prev为下标的值

这样key同样到达了正确的位置

动图演示:

int partion3(int* a, int left, int right)
{
int prev = left;
int cur = left + 1;
int keyi = left;
while (cur <= right)
{
if (a[cur] < a[keyi] && ++prev != cur)//prev != cur 防止cur和prev相等时,相当于自己和自己交换,可以省略
{ //前置 ++ 的优先级大于 != 不等于的优先级
Swap(&a[prev], &a[cur]);
}
++cur;
}
Swap(&a[keyi], &a[prev]);
return prev;
}

void QuickSort(int* a, int left, int right)
{
if (left >= right)
return;

int keyi = partion3(a, left, right);
//[left,keyi-1] keyi [keyi+1,right]
QuickSort(a, left, keyi - 1);
QuickSort(a, keyi + 1, right);
}

递归展开图

快速排序的优化

1、三数取中法

快速排序对于数据是敏感的,如果这个序列是非常无序,杂乱无章的,那么快速排序的效率是非常高的,可是如果数列有序,时间复杂度就会从O(N*logN)变为O(N^2),相当于冒泡排序了

若每趟排序所选的key都正好是该序列的中间值,即单趟排序结束后key位于序列正中间,那么快速排序的时间复杂度就是O(NlogN)

但是这是理想情况,当我们面对一组极端情况下的序列,就是有序的数组,选择左边作为key值的话,那么就会退化为O(N^2)的复杂度,所以此时我们选择首位置,尾位置,中间位置的数分别作为三数,选出中间位置的数,放到最左边,这样选key还是从左边开始,这样优化后,全部都变成了理想情况

    //快排的优化    //三数取中法    int GetMidIndex(int* a, int left, int right)    {     int mid = (left + right) / 2;          if (a[left] < a[right])     {      if (a[mid] < a[right])      {       return mid;      }      else if (a[mid] > a[right])      {       return right;      }      else      {       return left;      }     }          else     {            if (a[mid] > a[left])      {       return left;      }      else if (a[mid] < a[right])      {       return right;      }      else      {       return mid;      }     }         }    int partion5(int* a, int left, int right)    {     //三数取中,面对有序时是最坏的情况O(N^2),现在每次选的key都是中间值,变成最好的情况了     int midi = GetMidIndex(a, left, right);     Swap(&a[midi], &a[left]);//这样还是最左边作为key          int prev = left;     int cur = left + 1;     int keyi = left;     while (cur <= right)     {      if (a[cur] < a[keyi] && ++prev != cur)//prev != cur  防止cur和prev相等时,相当于自己和自己交换,可以省略      {                                   //前置 ++ 的优先级大于 != 不等于的优先级       //++prev;       Swap(&a[prev], &a[cur]);      }      ++cur;     }     Swap(&a[keyi], &a[prev]);     return prev;    }

2、递归到小子区间

随着递归深度的增加,递归次数以每层2倍的速度增加,这对效率有着很大的影响,当待排序序列的长度分割到一定大小后,继续分割的效率比插入排序要差,此时可以使用插排而不是快排

我们可以当划分区间长度小于10的时候,用插入排序对剩下的数进行排序

    //小区间优化法,可以采用直接插入排序    void QuickSort(int* a, int left, int right)    {     if (left >= right)      return;          if (right - left + 1 < 10)     {      InsertSort(a + left, right - left + 1);     }     else     {      int keyi = partion5(a, left, right);      //[left,keyi-1] keyi [keyi+1,right]      QuickSort(a, left, keyi - 1);      QuickSort(a, keyi + 1, right);     }    }

非递归版本

递归的算法主要是在划分子区间,如果要非递归实现快排,只要使用一个栈来保存区间就可以了。一般将递归程序改成非递归首先想到的就是使用栈,因为递归本身就是一个压栈的过程。

非递归的基本思想: 1. 申请一个栈,存放排序数组的起始位置和终点位置。 2. 将整个数组的起始位置和终点位置入栈。 3. 由于栈的特性是:后进先出,right后进栈,所以right先出栈。 定义一个end接收栈顶元素,出栈操作、定义一个begin接收栈顶元素,出栈操作。 4. 对数组进行一次单趟排序,返回key关键值的下标。 5. 这时候需要排基准值key左边的序列。 如果只将基准值key左边序列的起始位置和终点位置存入栈中,等左边排序完将找不到后边的区间。所以先将右边序列的起始位置和终点位置存入栈中,再将左边的起始位置和终点位置后存入栈中。 6.判断栈是否为空,若不为空 重复4、5步、若为空则排序完成。

    void QuickSortNonR(int* a, int left, int right)    {     Stack st;     StackInit(&st);     StackPush(&st,left);     StackPush(&st, right);          while (!StackEmpty(&st))     {      int end = StackTop(&st);      StackPop(&st);           int begin = StackTop(&st);      StackPop(&st);           int keyi = partion5(a,begin,end);      //区间被成两部分了 [begin,keyi-1] keyi [keyi+1,end]      if (keyi + 1 < end)      {       StackPush(&st,keyi+1);       StackPush(&st,end);      }      if (keyi-1>begin)      {       StackPush(&st, begin);       StackPush(&st, keyi -1);      }     }     StackDestroy(&st);    }

快速排序的总结:

  • ①快排的整体综合性能和使用场景都是比较好的,所以才敢叫快速排序
  • ②快排唯一死穴,就是排一些有序或者接近有序的序列,例如 2,3,2,3,2,3,2,3这样的序列时,会变成O(N^2)的时间复杂度
  • ③时间复杂度O(N*logN)
  • ④空间复杂度O(logN)

七、归并排序


归并排序的基本思想(分治思想):

  • 1、(拆分)将一段数组分为左序列和右序列,让他们两个分别有序,再将左序列细分为左序列和右序列,如此重复该步骤,直到细分到区间不存在或者只有一个数字为止
  • 2、(合并)将第一步得到的数字合并成有序区间

具体实现:

  • ①拆分
  • ②合并

递归实现:

从思想上来说和二叉树很相似,所以我们可以用递归的方法来实现归并排序

代码如下:

    void _MergeSort(int* a, int left, int right, int* tmp)    {     if (left >= right)     {      return;     }     int mid = (left + right) / 2;     _MergeSort(a, left, mid, tmp);     _MergeSort(a, mid+1, right, tmp);          int begin1 = left, end1 = mid;     int begin2 = mid + 1, end2 = right;     int i = left;     while (begin1 <= end1 && begin2 <= end2)     {      if (a[begin1] < a[begin2])      {       tmp[i++] = a[begin1++];      }      else      {       tmp[i++] = a[begin2++];      }     }     while (begin1 <= end1)     {      tmp[i++] = a[begin1++];     }     while (begin2 <= end2)     {      tmp[i++] = a[begin2++];     }     for (int j = left; j <= right; j++)     {      a[j] = tmp[j];     }    }    //归并排序    void MergeSort(int* a, int n)    {     int* tmp = (int*)malloc(sizeof(int)*n);     if (tmp == NULL)     {      printf("malloc fail\n");      exit(-1);     }     _MergeSort(a,0,n-1,tmp);          free(tmp);     tmp = NULL;    }

非递归实现:

我们知道,递归实现的缺点就是会一直调用栈,而栈内存往往是很小的。所以,我们尝试着用循环的办法去实现

由于我们操纵的是数组的下标,所以我们需要借助数组,来帮我们存储上面递归得到的数组下标,和递归的区别就是,递归要将区间一直细分,要将左区间一直递归划分完了,再递归划分右区间,而借助数组的非递归是一次性就将数据处理完毕,并且每次都将下标拷贝回原数组

归并排序的基本思路是将待排序序列a[0…n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。

但是我们这是理想情况下(偶数个),还有特殊的边界控制,当数据个数不是偶数个时,我们所分的gap组,势必会有越界的地方

第一种情况:

第二种情况:


代码如下:

    void MergeSortNonR(int* a, int n)    {     int* tmp = (int*)malloc(sizeof(int)*n);     if (tmp == NULL)     {      printf("malloc fail\n");      exit(-1);     }          int gap = 1;     while (gap < n)     {      for (int i = 0; i < n; i += 2 * gap)      {       // [i,i+gap-1] [i+gap,i+2*gap-1]       int begin1 = i, end1 = i + gap - 1;       int begin2 = i + gap, end2 = i + 2 * gap - 1;            // 核心思想:end1、begin2、end2都有可能越界       // end1越界 或者 begin2 越界都不需要归并       if (end1 >= n || begin2 >= n)       {        break;       }              // end2 越界,需要归并,修正end2       if (end2 >= n)       {        end2 = n- 1;       }            int index = i;       while (begin1 <= end1 && begin2 <= end2)       {        if (a[begin1] < a[begin2])        {         tmp[index++] = a[begin1++];        }        else        {         tmp[index++] = a[begin2++];        }       }            while (begin1 <= end1)       {        tmp[index++] = a[begin1++];       }            while (begin2 <= end2)       {        tmp[index++] = a[begin2++];       }            // 把归并小区间拷贝回原数组       for (int j = i; j <= end2; ++j)       {        a[j] = tmp[j];       }      }           gap *= 2;     }          free(tmp);     tmp = NULL;    }

归并排序的总结:

  • ①缺点是需要O(N)的空间复杂度,归并排序更多的是解决磁盘外排序的问题
  • ②时间复杂度:O(N*logN)
  • ③空间复杂度:O(N)

八、计数排序

又叫非比较排序,又称为鸽巢原理,是对哈希直接定址法的变形应用

基本思想:

  • 1、统计相同元素出现的个数
  • 2、根据统计的结果,将数据拷贝回原数组

具体实现:

  • ①统计相同元素出现的个数

对于给定的任意数组a,我们需要开辟一个计数数组count,a[i]是几,就对count数组下标是几++


这里我们用到了绝对映射,即a[i]中的数组元素是几,我们就在count数组下标是几的位置++,但是对于数据比较聚集,不是从较小的数字开始,例如1001,1002,1003,1004这样的数据,我们就可以用到相对映射的方法,以免开辟数组空间的浪费,count数组的空间大小我们可以用a数组中最大值减去最小值+1来确定(即:range=max-min+1),我们可以得到count数组下标 j =a[i]-min


  • ②根据count数组的结果,将数据拷贝回a数组

count[j]中数据是几,说明该数出现了几次,是0就不用拷贝


代码如下:

    void CountSort(int* a, int n)    {     int min = a[0], max = a[0];//如果不赋值,min和max就是默认随机值,最好给赋值一个a[0]          for (int i=1;i<n;i++)//修正 找出A数组中的最大值和最小值     {      if (a[i] < min)      {       min=a[i];      }      if (a[i]>max)      {        max=a[i];      }     }     int range = max - min + 1;//控制新开数组的大小,以免空间浪费     int* count = (int*)malloc(sizeof(int) * range);     memset(count,0, sizeof(int) * range);//初始化为全0     if (count==NULL)     {      printf("malloc fail\n");      exit(-1);     }          //1、统计数据个数     for (int i=0;i<n;i++)     {      count[a[i]-min]++;     }     //2、拷贝回A数组     int j = 0;     for (int i=0;i<range;i++)     {      while (count[i]--)      {       a[j++] = i + min;      }     }     free(count);     count = NULL;    }

计数排序总结:

  • ①在数据范围比较集中时,效率很高,但是使用场景很有限,可以排负数,但对于浮点数无能为力
  • ②时间复杂度:O(MAX(N,range))
  • ③空间复杂度:O(range)

八大排序的稳定性总结:

稳定的排序有:直接插入排序、冒泡排序、归并排序

不稳定的排序有:希尔排序、选择排序、堆排序、快速排序、计数排序