在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。
上述架构下,我们来看看数据存储的瓶颈是什么? 1.数据量的总大小 一个机器放不下时 2.数据的索引(B+ Tree)一个机器的内存放不下时 3.访问量(读写混和)一个实例不能承受 如果满足了上述1 or 3个,进化......
后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。
由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。
在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。
同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但性能也不能很好满足互联网的要求,只是在高可靠性上提供了非常大的保证。
MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。
今天我们可以通过第三方平台(如:Google,Facebook等)可以很容易的访问和抓取数据。用户的个人信息,社交网络,地理位置,用户生成的数据和用户操作日志已经成倍的增加。我们如果要对这些用户数据进行挖掘,那SQL数据库已经不适合这些应用了, NoSQL数据库的发展也却能很好的处理这些大的数据。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”, 泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。 一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦
RDBMS vs NoSQL
RDBMS
NoSQL
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求, 最多只能同时较好的满足两个。 因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类: CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。 CP - 满足一致性,分区容忍必的系统,通常性能不是特别高。 AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
BASE就是为了解决关系数据库强一致性引起的问题而引起的可用性降低而提出的解决方案。
BASE其实是下面三个术语的缩写: 基本可用(Basically Available) 软状态(Soft state) 最终一致(Eventually consistent)
它的思想是通过让系统放松对某一时刻数据一致性的要求来换取系统整体伸缩性和性能上改观。为什么这么说呢,缘由就在于大型系统往往由于地域分布和极高性能的要求,不可能采用分布式事务来完成这些指标,要想获得这些指标,我们必须采用另外一种方式来完成,这里BASE就是解决这个问题的办法
Redis:REmote DIctionary Server(远程字典服务器),是完全开源免费的,用C语言编写的,遵守BSD协议, 是一个高性能的(key/value)分布式内存数据库,基于内存运行并支持持久化的NoSQL数据库,是当前最热门的NoSql数据库之一,也被人们称为数据结构服务器。
Redis 与其他 key - value 缓存产品有以下三个特点
在CentOS和Red Hat系统中,首先添加EPEL仓库,然后更新yum源:
sudo yum install epel-releasesudo yum update
然后安装Redis数据库:
sudo yum -y install redis
安装好后启动Redis服务即可:
sudo systemctl start redis
2.Ubuntu安装Redis
sudo apt-get install redis-server
安装完成后,Redis服务器会自动启动,我们检查Redis服务器程序
单进程模型来处理客户端的请求。对读写等事件的响应。是通过对epoll函数的包装来做到的。Redis的实际处理速度完全依靠主进程的执行效率。Epoll是Linux内核为处理大批量文件描述符而作了改进的epoll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。
默认16个数据库,类似数组下表从零开始,初始默认使用零号库
Select命令可以切换不同的数据库
Dbsize查看当前数据库的key的数量
Flushdb:清空当前库
Flushall:通杀全部库
统一密码管理,16个库都是同样密码,要么都OK要么一个也连接不上
String(字符串) string是redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value。 string类型是二进制安全的。意思是redis的string可以包含任何数据。比如jpg图片或者序列化的对象 。 string类型是Redis最基本的数据类型,一个redis中字符串value最多可以是512M
Hash(哈希) Redis hash 是一个键值对集合。 Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。
类似Java里面的Map<String,Object>
List(列表) Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。 它的底层实际是个链表
Set(集合) Redis的Set是string类型的无序集合。它是通过HashTable实现实现的,
zset(sorted set:有序集合) Redis zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。 不同的是每个元素都会关联一个double类型的分数。 redis正是通过分数来为集合中的成员进行从小到大的排序。zset的成员是唯一的,但分数(score)却可以重复。
常用方法:
示例:
常用:
参数说明 redis.conf 配置项说明如下:
Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程 daemonize no
当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定 pidfile /var/run/redis.pid
指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字 port 6379
绑定的主机地址 bind 127.0.0.1
当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能 timeout 300
指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose loglevel verbose
日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null logfile stdout
设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id databases 16
指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合 save <seconds> <changes> Redis默认配置文件中提供了三个条件: save 900 1 save 300 10 save 60 10000 分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大 rdbcompression yes
指定本地数据库文件名,默认值为dump.rdb dbfilename dump.rdb
指定本地数据库存放目录 dir ./
设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步 slaveof <masterip> <masterport>
当master服务设置了密码保护时,slav服务连接master的密码 masterauth <master-password>
设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭 requirepass foobared
设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息 maxclients 128
指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区 maxmemory <bytes>
指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no appendonly no
指定更新日志文件名,默认为appendonly.aof appendfilename appendonly.aof
指定更新日志条件,共有3个可选值: no:表示等操作系统进行数据缓存同步到磁盘(快) always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全) everysec:表示每秒同步一次(折衷,默认值) appendfsync everysec
指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制) vm-enabled no
虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享 vm-swap-file /tmp/redis.swap
将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0 vm-max-memory 0
Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值 vm-page-size 32
设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。 vm-pages 134217728
设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4 vm-max-threads 4
设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启 glueoutputbuf yes
指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法 hash-max-zipmap-entries 64 hash-max-zipmap-value 512
指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍) activerehashing yes
指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件 include /path/to/local.conf
在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里
Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的,这就确保了极高的性能如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。
Fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量、环境变量、程序计数器等)数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程。
保存数据到快照:
Rdb保存的是dump.rdb文件,使用save或者bgsave命令即可触发RDB快照,Save:save时只管保存,其它不管,全部阻塞;BGSAVE:Redis会在后台异步进行快照操作,快照同时还可以响应客户端请求。可以通过lastsave命令获取最后一次成功执行快照的时间
恢复快照数据:
将备份文件 (dump.rdb) 移动到 redis 安装目录并启动服务即可
优势
劣势
以日志的形式来记录每个写操作,将Redis执行过的所有写指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作
Aof保存的是appendonly.aof文件,使用前修改默认的appendonly no,改为yes,恢复时重启redis便会自动加载
优势:
劣势:
可以一次执行多个命令,本质是一组命令的集合。一个事务中的所有命令都会序列化,按顺序地串行化执行而不会被其它命令插入,不许加塞,一个队列中,一次性、顺序性、排他性的执行一系列命令
开启:以MULTI开始一个事务
入队:将多个命令入队到事务中,接到这些命令并不会立即执行,而是放到等待执行的事务队列里面
执行:由EXEC命令触发事务
Watch指令,类似乐观锁,事务提交时,如果Key的值已被别的客户端改变,比如某个list已被别的客户端push/pop过了,整个事务队列都不会被执行。通过WATCH命令在事务执行之前监控了多个Keys,倘若在WATCH之后有任何Key的值发生了变化,EXEC命令执行的事务都将被放弃,同时返回Nullmulti-bulk应答以通知调用者事务执行失败
行话:也就是我们所说的主从复制,主机数据更新后根据配置和策略,自动同步到备机的master/slaver机制,Master以写为主,Slave以读为主
Slave启动成功连接到master后会发送一个sync命令
Master接到命令启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行完毕之后,master将传送整个数据文件到slave,以完成一次完全同
全量复制:而slave服务在接收到数据库文件数据后,将其存盘并加载到内存中。
增量复制:Master继续将新的所有收集到的修改命令依次传给slave,完成同步
但是只要是重新连接master,一次完全同步(全量复制)将被自动执行
一个Master两个Slave,主机复制写,备机负责读
上一个Slave可以是下一个slave的Master,Slave同样可以接收其他slaves的连接和同步请求,那么该slave作为了链条中下一个的master,可以有效减轻master的写压力
使当前数据库停止与其他数据库的同步,转成主数据库
这里先简单介绍一下主从复制的概念,具体操作方法我会在接下来的博客中写出