机器之心专栏
机器之心编辑部
快手联合哈尔滨工业大学研发的「KwaiAgents」,使7B/13B模型也能达到超越GPT-3.5的效果,并且这些系统、模型、数据、评测都开源了!
7B 大小的模型也能玩转 AI Agents 了?近期,快手开源了「KwaiAgents」,问它周末滑雪问题,它不但帮你找到场地,连当天的天气都帮你考虑周到了。
大家都知道大语言模型(LLM)通过对语言的建模而掌握了大量知识,并具备一定认知和推理能力。但即使是当前最强的 GPT-4,单独使用的情况下,依然会一本正经地胡说八道,无法跟世界保持实时的交互。AI Agents 就是解决这个问题的道路之一,通过激发大模型任务规划、反思、调用工具等能力,使大模型能够借助现实世界工具提升生成内容的准确性,甚至有能力解决复杂问题。这一次,快手联合哈尔滨工业大学研发的「KwaiAgents」,使 7B/13B 的 “小” 大模型也能达到超越 GPT-3.5 的效果,并且这些系统、模型、数据、评测都开源了!
从「KwaiAgents」的 Github 主页中可以看到,本次开源内容包含:
系统
KAgentSys 系统,是基于大模型作为认知内核,配以记忆机制、工具库,形成的迭代式自动化系统。其主要包含:
本次开源 KAgentSys 的部分能力,系统将逐步进行升级和开放。
模型
为了避免训练中单一模板引起的过拟合问题,团队提出 Meta-Agent Tuning (MAT) 的方法,通过在训练数据中引入更多 Agent Prompt 模板,从而提升大模型在 Agent 能力上的通用性,并提升了效果。
Meta-Agent Tuning (MAT) 分为两阶段:
评测
KAgentBench 通过人工精细化标注的上千条数据,做到了开箱即用,让大家能够用一行命令评测一个大模型在不同模板下各方面的 Agents 能力。
如上图所示,在 KAgentBench 中,会对不同种类的能力构造输入,每个 query 配备多个模板和多个人工编辑的真实回答,旨在综合评测准确性和泛化性,下表显示了经过 MAT 调优后,7B-13B 模型各项能力的提升,且超越了 GPT-3.5 的效果:
同时,该研究还请人类标注者在 200 个事实性和时效性的问题(如 “刘德华今年几岁了”),对不同的大模型和 Agent 系统进行了交叉评估,可以看到 KAgentSys 系统和 MAT 之后模型提升显著(百分号前为正确率,括号内为 5 分制均分)。
通常仅依赖网页搜索对一些长尾问题和热门问题返回结果不佳。比如问到 “安东内拉比梅西大多少天?” 这类长尾问题,往往搜索结果返回的都是一些两者的八卦新闻,而返回不了一些关键信息。而 KAgentSys 通过调用百科搜索工具获取精准的出生日期,再调用 time_delta 时间差工具算出年龄差,就能精准回答这个问题了。
团队表示,AI Agents 是一条非常有潜力的道路,未来一方面会在这个方向持之以恒地沉淀核心技术,并为整个社区不断地注入新的活力;另一方面也会积极探索 Agents 技术与快手业务的结合,尝试更多有趣、有价值的创新应用落地。