人工智能(AI)泛指机器或系统表现出类似人类的行为。在人工智能最基本的形式中,计算机使用过去的大量数据来“模仿”人类行为。其范围包括从识别猫和鸟之间的差异到在制造工厂中执行复杂的活动。
虽然其早期形式使计算机能够与人类玩跳棋等游戏,但人工智能现在已成为我们日常生活的一部分。我们拥有用于质量控制、视频分析、语音转文本(自然语言处理)和自动驾驶的人工智能解决方案,以及医疗保健、制造金融服务和娱乐领域的解决方案。
1949 年之前,计算机可以执行命令,但它们无法记住自己做了什么,因为它们无法存储这些命令。1950年,艾伦·图灵在他的论文《计算机器与智能》中讨论了如何构建智能机器并测试这种智能。五年后,第一个 人工智能程序在达特茅斯人工智能夏季研究项目(DSPRAI) 上提出 。这一事件催化了接下来几十年的人工智能研究。
1957 年至 1974 年间,计算机变得更快、更便宜、更容易使用。机器学习算法得到改进,1970 年,DSPRAI 的一位主持人告诉《生活》杂志,将出现一台具有普通人一般智力的机器。尽管取得了成功,但计算机无法有效存储或快速处理信息,这为未来十年追求人工智能带来了障碍。
随着算法工具包的扩展和更多专用资金的投入,人工智能在 20 世纪 80 年代复兴。约翰·霍普菲尔德 (John Hopefield) 和大卫·鲁梅尔哈特 (David Rumelhart) 引入了“深度学习”技术,使计算机能够通过经验进行学习。爱德华·费根鲍姆引入了模仿人类决策的“专家系统”。尽管缺乏政府资金和公众宣传,人工智能仍然蓬勃发展,并在接下来的二十年中实现了许多里程碑式的目标。1997 年,卫冕国际象棋世界冠军、国际象棋大师加里·卡斯帕罗夫 (Gary Kasparov) 被 IBM 的国际象棋计算机程序 Deep Blue 击败。同年,Dragon Systems开发的语音识别软件在Windows上实现。Cynthia Breazeal 还开发了 Kismet,一个可以识别和表达情绪的机器人。
2016 年,谷歌的 AlphaGo 程序 击败了围棋大师李世石 ,2017 年,玩扑克的超级计算机 Libratus 击败了 最优秀的人类棋手。
人工智能主要分为两大类:基于功能的人工智能和基于能力的人工智能。
狭义人工智能 (ANI): 执行狭义编程任务的系统。该人工智能结合了反应性记忆和有限记忆。当今大多数人工智能应用都属于这一类。 通用人工智能(AGI):这种人工智能能够像人类一样训练、学习、理解和执行。 超级人工智能(ASI):由于其卓越的数据处理、记忆和决策能力,这种人工智能能够比人类更好地执行任务。
人工智能是计算机科学的一个分支,旨在在机器中模拟人类智能。人工智能系统由算法提供支持,使用 机器学习和深度学习等技术 来展示“智能”行为。
当计算机的软件能够根据之前的结果成功预测正在发生的场景并对其做出反应时,计算机就可以“学习”。机器学习是指计算机开发模式识别的过程,或者是根据数据不断学习和预测的能力,并且无需专门编程即可进行调整。机器学习是人工智能的一种形式 ,可以有效地自动化分析模型构建过程,并允许机器独立适应新场景。
构建机器学习模型的四个步骤是:
机器学习有三种方法: “监督”学习使用标记数据,需要较少的训练。“无监督”学习用于通过识别模式和关系来对未标记数据进行分类。“半监督”学习使用小型标记数据集来指导较大的未标记数据集的分类。
深度学习 是机器学习的一个子集,它的性能明显优于一些传统的机器学习方法。深度学习结合了多层人工神经网络以及数据和计算密集型训练,其灵感来自于我们对人类大脑行为的最新理解。这种方法已经变得非常有效,甚至开始在许多领域超越人类的能力,例如图像和语音识别以及自然语言处理。
深度学习模型处理大量数据,通常是无监督或半监督的。
当你可以定义答案是什么样子但不知道如何得到答案时,人工智能具有从数据中提取意义的独特能力。人工智能可以增强人类的能力,并将呈指数级增长的数据转化为洞察力、行动和价值。
如今,人工智能已广泛应用于各行各业,包括医疗保健、制造和政府。以下是一些具体的用例: