假设含有n个记录的序列为{r1,r2,……,rn},其相应的关键字分别为{k1,k2,……,kn},需确定1,2,……,n的一种排列p1,p2,……,pn,使其相应的关键字满足kp1≤kp2≤……≤kpn(非递减或非递增)关系,即使得序列成为一个按关键字有序的序列{rp1,rp2,……,rpn},这样的操作就称为排序。
内排序是在排序整个过程中,待排序的所有记录全部被放置在内存中。外排序是由于排序的记录个数太多,不能同时放置在内存,整个排序过程需要在内外存之间多次交换数据才能进行
内排序:插入排序、交换排序、选择排序和归并排序
两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止
简单选择排序法(Simple Selection Sort)就是通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1≤i≤n)个记录交换之
将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增1的有序表
基本有序:就是小的关键字基本在前面,大的基本在后面,不大不小的基本在中间
这其实就是希尔排序的精华所在,它将关键字较小的记录,不是一步一步地往前挪动,而是跳跃式地往前移
每次都进行的是间断的跳跃式变换,而不是相邻的
堆是具有下列性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆(例如图9-7-2左图所示);或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
将待排序的序列构造成一个大顶堆。此时,整个序列的最大值就是堆顶的根结点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的次小值。如此反复执行,便能得到一个有序序列了
归并排序(Merging Sort)就是利用归并的思想实现的排序方法。它的原理是假设初始序列含有n个记录,则可以看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到⌈n/2⌉(⌈x⌉表示不小于x的最小整数)个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序方法称为2路归并排序。
通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的