虽然 Python 和 R 已经成为构建机器学习和数据科学应用程序的首选,但许多组织正转向使用 Java 开发来满足他们的需求。请阅读本文,了解如何做到的,以及为什么要这样做。
近年来,机器学习、数据科学和人工智能一直是人们谈论最多的技术。这也是理所当然的。科技领域的这些进步已经将自动化和业务流程提升到一个新的水平。各种规模的组织都投入了数百万美元进行研究和人员投入,以开发这些功能极其强大的数据驱动应用程序。
有许多不同的编程语言可用于开发机器学习和数据科学应用程序。虽然 Python 和 R 已经成为开发这些程序的首选,但许多组织正在转向使用 Java 开发来满足他们的需求。从企业级业务解决方案和导航系统到移动电话和应用程序,Java 几乎适用于每个技术领域。
在 20 世纪 90 年代初,一位名叫 James Gosling 的加拿大计算机科学家和他的团队在受雇于 Sun Microsystem(Oracle 旗下)时创建了 Java 语言。20 多年过去了,Java 仍然是当今排名最高、最赚钱的编程语言之一。
Java 是许多设备和应用程序背后无形的力量,这些设备和应用程序人们每天都在使用,并为人们的日常生活提供了动力。Java 不但可以用于机器学习和数据科学应用程序开发,而且 Java 也是很多开发人员的首选,原因有很多,包括:
Java 是一种非常有用、快速且可靠的编程语言,可以帮助开发团队构建大量的项目。从数据挖掘到数据分析,再到机器学习应用程序的构建,Java 在数据科学领域的应用远远不止于此。对于这些任务,它是最受欢迎的语言之一,对此有很多原因。如果你要处理一个机器学习项目,可以考虑使用 Java。你将会惊讶地发现,Java 会让你受益匪浅。
Pablo Ernesto Vigneaux Wilton:
Java 有很多问题,比如生产效率低、代码维护能力差等。众所周知,在一些公司中,为了速度更快,Python 代码后来被转写成 Java。但是,其他的选项是 C++(因为我认为它更好)、Cyton 或 Go,即便如此,如果要跟我打赌的话,我更喜欢的是 Julia,这是为 DSML 创建的一种快速语言。
Ralf Klinkenberg:
我完全同意作者的观点,即 Java 是一种非常适合数据科学和机器学习应用的编程语言。我这有一个不错的例子,可以很好地解释这一点:机器学习和数据科学软件平台 RapidMiner 正是用 Java 实现的。RapidMiner 开源项目始于 2000 年,当时使用 Java,直到今天仍然使用 Java。
根据最近一次 KDnuggets 机器学习工具年度调查,RapidMiner 是第二大最流行的机器学习工具。RapidMiner 在全球 150 多个国家 / 地区拥有超过 65 万注册用户。
所有主要行业的许多公司都将 RapidMiner 用于各种机器学习应用程序。
因此,Java 显然非常适合开发复杂的企业级机器学习应用程序,并进行部署,将他们通入生产并维护它们(包括模型运维,即 ModelOps 或 MLOps)。
总而言之,Java 早在 20 年前就已经是构建机器学习工具和应用程序的一个很好的选择,并且多年来,随着越来越多可用的基于 Java 的机器学习库和工具的出现,Java 已经成为实现企业级机器学习解决方案的更好选择。
但是,如果你不想重新发明轮子,也不想重复实现他人早已实现的东西,你可能也会想知道,你是否要在一开始就用一种编程语言来编写解决方案。相反,你可能会考虑使用像 RapidMiner Studio 这样的可视化机器学习流程设计环境(通过拖放进行可视化编程,并带有内置的智能自动推荐系统,用于机器学习过程设计中的下一个最佳步骤,还带有像 AutoModel 这样的智能助手,用于自动找到机器学习任务的最佳算法和参数化),这极大地加快了从想法到解决方案再到部署的过程,并且使维护变得更加容易:可视化的数据处理流程显然比很多页的源码更容易掌握和维护。我推荐大家尝试一下 RapidMiner Studio 或 RapidMiner Go,亲自体验一下。
作者介绍:
Malcom Ridgers 是专门从事软件外包行业的技术专家。他能接触到最新的市场消息,并对创新和科级企业的下一步发展有着敏锐的眼光。
原文链接:
https://www.kdnuggets.com/2020/04/java-used-machine-learning-data-science.html