Redis 是 NoSQL,但是可处理 1 秒 10w 的并发(数据都在内存中) 使用 java 对 redis 进行操作类似 jdbc 接口标准对 mysql,有各类实现他的实现类,我们常用的是 druid 其中对 redis,我们通常用 Jedis(也为我们提供了连接池 JedisPool) 在 redis 中,key 就是 byteredis 的数据结构(value): String,list,set,orderset,hash
Redis中的字符串是二进制安全的,可以存储任何类型的数据,如文本、图片等。
使用场景:
缓存数据:存储经常访问的数据,以提高读取速度。 计数器:适用于统计网站访问量、用户点击次数等。 分布式锁:使用字符串实现简单的分布式锁机制。
有序、可重复的元素集合。
使用场景:
消息队列:通过LPUSH和RPUSH实现队列的入队和出队操作。 最新列表:保存最新的N条记录,如最新发布的文章列表。 分页数据:存储分页数据,以减轻数据库负担。
无序、不重复的元素集合。
使用场景:
标签系统:每个标签是一个集合,用户可以属于多个标签。 共同好友:两个用户的共同好友可以用集合表示。 利用集合运算求交集、并集、差集等。
类似于字典,包含键值对的集合。
使用场景:
存储对象:将对象的字段存储为散列,方便读取和更新。 用户属性:存储用户的各种属性,如用户名、年龄等。 记录存储:适用于存储多个字段的数据。
数据结构: 有序的元素集合,每个元素都有一个分数。
使用场景:
排行榜:根据分数排序,适用于游戏中的用户排名等场景。 范围查找:根据分数范围查找元素,如查找指定区间内的文章。 唯一性成员:确保集合中的成员唯一。
Redis主要将数据存储在内存中,这极大地加快了数据的读写速度。此外,Redis采用异步操作模式,将部分耗时的操作如持久化写操作(RDB快照、AOF日志)等交给后台线程处理,主线程则继续处理其他请求。
Redis使用了非阻塞的I/O多路复用机制,主线程通过 epoll 或 select 监听多个套接字,当其中一个套接字准备好数据时,主线程即可快速切换到该套接字进行读写操作,从而充分利用 CPU 资源。
单线程模型避免了多线程的竞态条件和锁的开销。在多线程环境下,为了保证数据一致性,需要使用锁,而锁的使用可能导致性能下降。Redis通过单线程模型避免了这一问题,简化了代码复杂度。
Redis允许用户选择不同的持久化方式(如RDB快照、AOF日志),用户可以根据自己的需求选择适合的方式,以达到一定的持久化要求,而不是强制性地进行同步持久化。
Redis采用基于事件驱动的网络模型,使用了非阻塞的套接字和异步的事件处理机制,能够在处理大量连接时保持较低的延迟。
在默认情况下,Redis将内存数据库快照保存在名字为dump.rdb 的二进制文件中。你可以对Redis进行设置,让它在“N秒内数据集至少有M个改动”这一条件被满足时,自动保存一次数据集。 比如,以下设置会让Redis在满足“60秒内有至少有1000个键被改动”这一条件时,自动保存一次
save 60 1000//关闭RDB只需要将所有的save保存策略注释掉即可
还可以手动执行命令生成RDB快照,进入redis客户端执行命令save或bgsave可以生成dump.rdb文件,每次命令执行都会将所有redis内存快照到一个新的rdb文件里,并覆盖原有rdb快照文件。
bgsave 子进程是由主线程fork 生成的,可以共享主线程的所有内存数据.bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。此时,如果主线程对这些数据也都是读操作,那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据,那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。
优点: 是一个紧凑压缩的二进制文件,Redis 加载 RDB 恢复数据远远快于 AOF 的方式。
缺点: 由于每次生成 RDB 开销较大,非实时持久化
快照功能并不是非常耐久 (durable) : 如果 Redis 因为某些原因而造成故障停机,那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。从 1.1 版本开始,Redis 增加了一种完全耐久的持久化方式: AOF 持久化,将修改的每条指今记录进文件appendonly.aof中(先写入o cache,每隔一段时间fsync到磁盘)
可以通过修改配置文件来打开AOF功能:
appendonly yes
可以配置Redis多久才将数据同步到到磁盘一次。
yamlappendfsync always; #每次有新命令追加到 AOF 文件时就执行一次 fsync ,非常慢,也非常安全appendfsync everysec: #每秒 fsync 一次,足够快,并且在敌障时只会丢失 1 秒钟的数据(默认-推荐)appendfsync no: #从不 fsync ,将数据交给操作系统来处理。更快,也更不安全的选择。
优点: 实时持久化。
缺点: 所以 AOF 文件体积逐渐变大,需要定期执行重写操作来降低文件体积, 加载慢
概述:
主从复制,是指将一台 Redis 服务器的数据,复制到其他的 Redis 服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。 默认情况下,每台 Redis 服务器都是主节点;且一个主节点可以有多个从节点 (或没有从节点),但一个从节点只能有一个主节点
优点 数据冗余备份,提高数据可靠性。 读写分离,提高系统性能。 缺点 无法自动进行故障转移,主节点发生故障,需要手动切换主节点。 主节点承担所有写操作,性能可能会遇到瓶颈 数据没有分布式存储,节点内存要求过高。
主节点挂了,单纯的主从模式,无法实现故障转移。需要利用下述的哨兵进行故障转移
(2.8 版本或更高才有) sentinel哨兵是特殊的redis服务,不提供读写服务,主要用来监控redis实例节点。哨兵架构下client端第一次从哨兵找出redis的主节点,后续就直接访问redis的主节点,不会每次都通过sentinel代理访问redis的主节点,当redis的主节点发生变化,哨兵会第一时间感知到,并且将新的redis主节点通知给client端(这里面redis的client端一般都实现了订阅功能,订阅sentinel发布的节点变动消息) 优点 主从模式的基础之上,增加自动故障转移 缺点 数据没有分布式存储,节点内存要求过高。
选举方式 :raft算法。每个 S 节点有一票同意权,哪个 S 节点做出主观下线的时候,就会询问其他 S 节点是否同意其为领导者。获得半数选票的则成为领导者。基本谁先做出客观下线,谁成为领导者。
S节点的领导者会进行故障转移操作。 当Redis主节点挂了,哨兵集群会重新选举出新的Redis主节点,同时会修改所有sentinel节点的配置文件的集群元数据信息。其中会包括主节点的从节点信息,感知到的其他哨兵节点信息,以及当前主节点信息。
实例说明,一主两从一哨兵。单机上装3台Redis一个哨兵。也可以分多多机器进行
主:6379
从:6380、6381
哨兵:26379
#修改绑定的ip地址,绑定后,只有此ip才能够访问redisbind 0.0.0.0 #端口号port 6379#保护模式修改为否,允许远程连接protected-mode no#后台运行daemonize yes#设定访问密码requirepass 123456#设定主库密码与当前库密码同步,保证从库能够提升为主库。(与主库的requirepass一致)masterauth 123456#打开AOF持久化支持appendonly yes#进程守护文件pidfile "/var/run/redis_6379.pid"#db等相关文件目录位置(替换成自己的目录)dir "../redis-sentinel"#日志目录(替换成自己的目录)logfile "../redis-sentinel/log6379.log"
6380、6381配置与6379配置雷同,把端口号及一些进程守护文件等做一些区分即可。但是还需要在增加一个配置
#将6379配置为该从节点的主节点replicaof 127.0.0.1 6379
liswdeMBP:bin lisw$ ps -ef |grep redis 501 48167 1 0 10:17上午 ?? 0:18.96 ./redis-server *:6380 501 48174 1 0 10:17上午 ?? 0:19.52 ./redis-server *:6381 501 49266 1 0 10:37上午 ?? 0:17.01 ./redis-server *:6379 liswdeMBP:bin lisw$
liswdeMBP:bin lisw$ ./redis-cli -a 123456 -h 127.0.0.1 -p 6379127.0.0.1:6379> info replication# Replicationrole:masterconnected_slaves:2slave0:ip=192.168.50.130,port=6380,state=online,offset=602,lag=1slave1:ip=192.168.50.130,port=6381,state=online,offset=588,lag=1master_failover_state:no-failovermaster_replid:3c459593935c380cc4647d6214a751f6f79ac1ddmaster_replid2:0000000000000000000000000000000000000000master_repl_offset:602second_repl_offset:-1repl_backlog_active:1repl_backlog_size:1048576repl_backlog_first_byte_offset:1repl_backlog_histlen:602127.0.0.1:6379>
修改sentinel.conf文件,关键配置如下:
# redis sentinel配置文件#配置监听的主节点,masterRedis为服务名称,可以自己定义。192.168.50.130为主节点的ip,6379为主节点的名称,1代表有一个或者一个以上的哨兵认为主节点不可用时,则进行选举操作sentinel monitor masterRedis 192.168.50.130 6379 1#设置主节点的访问密码sentinel auth-pass masterRedis 123456# 关闭保护模式,只有关闭之后,才能远程连接protected-mode no# 哨兵端口port 26379# 哨兵数据存放位置dir "/Users/lisw/work/work-tools/redis-6.2.7/redis-sentinel/sentineldata"# 日志文件logfile "../redis-sentinel/sentinellog.log"# 以守护进程运行daemonize yes# 进程ID保存位置pidfile "/var/run/redis-sentinel-26379.pid"# 设置sentinel的访问密码requirepass "123456"
如果哨兵节点与主节点在同一台ip时,配置sentinel monitor时不要使用127.0.0.1,否则可能会有问题。
最后启动哨兵节点即可
liswdeMBP:bin lisw$ ./redis-sentinel ../redis-sentinel/sentinel.conf
Redis Cluster,是Redis 3.0开始引入的分布式存储方案。集群由多个Redis节点组成,数据也是进行分布式存储在不同的节点上的。节点划分为主节点与从节点,主节点负责读写请求的处理以及集群状态的维护。从节点负责从主节点进行数据的复制。
优点 数据分布式存储,单节点压力过小,可实现大规模数据存储。 负载均衡,提高性能。 高可用故障自动转移。 缺点 配置和管理较复杂 一些复杂的多键操作可能受到限制
Redis集群有16384个哈希槽(编号0-16383),集群的每组节点负责一部分哈希槽 每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。
三个主节点各自有一个从节点,其中一个主节点不可用以后,对应的从节点会成为主节点继续服务。如果对应的从节点也不可用,那么整个集群将不可用。
按照单机版的redis进行编译及安装redis。
实例说明,三主三从
192.168.0.10 6380、6381、6382
192.168.0.11 6380、6381、6382
两台机器的redis分别复制redis.conf配置文件各形成3份,分配修改3个配置文件。关键信息如下: 这里是把redis可执行文件安装到了redis目录中。编译redis的时候执行的命令如下:
cd /opt/redis-6.2.7makemake install PREFIX=/opt/redis-6.2.7
#修改绑定的ip地址,绑定后,只有此ip才能够访问redisbind 0.0.0.0 #端口号port 6379#保护模式修改为否,允许远程连接protected-mode no#后台运行daemonize yes#设定访问密码,所有节点需要一直requirepass enginex123#访问主库时的密码masterauth enginex123#打开AOF持久化支持appendonly yes#进程守护文件pidfile "/var/run/redis_6380.pid"#db等相关文件目录位置(替换成自己的目录)dir "../redis-cluster"#日志目录(替换成自己的目录)logfile "../redis-cluster/log6380.log"#开启集群cluster-enabled yes#集群节点文件,自动生成的。cluster-config-file nodes-6380.conf#集群节点之前的连接超时时间cluster-node-timeout 15000
6381、6382配置与6380配置雷同,把端口号及一些进程守护文件等做一些区分即可。
./redis-server ../redis-cluster/6380/redis-6380.conf &./redis-server ../redis-cluster/6381/redis-6381.conf &./redis-server ../redis-cluster/6382/redis-6382.conf &[root@master ~]# ps -ef |grep redisroot 11162 1 0 09:33 ? 00:00:24 ./redis-server 192.168.0.10:6380 [cluster]root 11189 1 0 09:33 ? 00:00:24 ./redis-server 192.168.0.10:6381 [cluster]root 11215 1 0 09:33 ? 00:00:25 ./redis-server 192.168.0.10:6382 [cluster]
另外一台机器,按照同样方式进行启动。
./redis-cli -a 123456 --cluster create 192.168.0.10:6380 192.168.0.10:6381 192.168.0.10:6382 192.168.0.11:6380 192.168.0.11:6381 192.168.0.11:6382 --cluster-replicas 1
-a 为Redis的节点密码
--cluster-replicas 1 代表 一个master后有几个slave,1代表为1个slave节点
过程中会提示以下内容,输入 yes 继续。 自此集群环境搭建完毕
连接任意一台redis,输入cluster nodes
[root@iZuf643dnnz46hhj1s4ttbZ bin]# ./redis-cli -c -h 192.168.0.148 -p 6380 -a enginex123Warning: Using a password with '-a' or '-u' option on the command line interface may not be safe.192.168.0.148:6380> cluster nodesa5c37c5392a2183d917b97e2e9dc357c537245e1 192.168.0.142:6381@16381 master - 0 1667898025618 2 connected 10923-16383395205d531c6e4cf5f9feb8c78e2881252f1e5a6 192.168.0.142:6382@16382 slave 1dc115668298557846ad8dfa48aeb4784fb8a8f5 0 1667898026620 4 connected5687fbf444b734bd98a040dd8686993b7af61109 192.168.0.148:6382@16382 slave f3de8d817b8648d97ed74537b690d394825bfa29 0 1667898027000 1 connectedf3de8d817b8648d97ed74537b690d394825bfa29 192.168.0.142:6380@16380 master - 0 1667898025000 1 connected 0-5460e67d6f23088f1e9d4c246f3a7293f2012a5eac1c 192.168.0.148:6381@16381 slave a5c37c5392a2183d917b97e2e9dc357c537245e1 0 1667898027622 2 connected1dc115668298557846ad8dfa48aeb4784fb8a8f5 192.168.0.148:6380@16380 myself,master - 0 1667898025000 4 connected 5461-10922192.168.0.148:6380>
过期策略是 Redis 用来处理过期键的一种机制。当 Redis 中的键值对设置了过期时间后,在过期时间到达时,会自动触发过期键删除策略,将过期的键值对删除以释放内存空间。
Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。
可通过修改配置文件,进行配置内存淘汰策略
#配置淘汰策略为,内存不足,写入数据操作会报错。maxmemory-policy noeviction
查询一个一定不存在的数据,如果从DB查不到数据则不会写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,这个过程我们成为缓存穿透。
解决方案:
1.空数据仍然进行缓存,可缩短缓存时间。 2.利用布隆过滤器,将所有可能存在的数据存在Reids的BigMap中,一定不存在的数据,会被BigMap拦截掉,从而达到无法进入DB查询的目的。
对于设置了过期时间的 key,缓存在某个时间点过期的时候,恰好这时间点对这个 Key 有大量的并发请求过来,这些请求发现缓存过期,会从DB 加载数据并存储到缓存,大并发的请求全部到DB,这个情况称为缓存击穿。
解决方案:
1.使用锁,防止大量请求进入DB得到数据在存储到Redis。 2.设置永不过期。可以单独开辟人物去刷新这些永不过期的数据做过期逻辑
设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部到 DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多 key,击穿是某一个key 缓存。
解决方案:
将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值, 比如 1-5 分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效 的事件。
作者:程序员无名
链接:
https://juejin.cn/post/7309131109740576803